If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+160x-6300=0
a = 2; b = 160; c = -6300;
Δ = b2-4ac
Δ = 1602-4·2·(-6300)
Δ = 76000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76000}=\sqrt{400*190}=\sqrt{400}*\sqrt{190}=20\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-20\sqrt{190}}{2*2}=\frac{-160-20\sqrt{190}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+20\sqrt{190}}{2*2}=\frac{-160+20\sqrt{190}}{4} $
| 4u/9=16 | | X(1/x)=0.25 | | 6(2x+4)-6(5x-7)=5 | | 15x^2-2.5x-1.5=0 | | 20+x÷6=x | | y+4/12–y–1/12=y/2 | | y+4 12–y–1 12=y 2 | | y+4/12–(y–1)/12=y/2 | | x-5=3x-3÷7 | | 4*x+9=5*x-15+7*x | | 8(4w+10)/3=4 | | -2(2t+5)=-34 | | 10(s-3)=-52 | | 5(x+2)-3(x-2)=12 | | -24=x×x-10x+1 | | -76/8+2y=51/4 | | 4/3x+6/6x=36/9 | | -76/8+2y-11/4=10 | | 4x+18=-70-9x | | 5((3x/7)-2)=3x | | 3y/4=0.33 | | 2-3x=1-4x | | w^2+15w-24=0 | | 2/5-7x/2+1/2(3x+1)=-5/2+x | | 4(w-3)=3w | | 16c+13=9 | | 9h-7=13+9 | | 40x+39=0 | | 0.6d=30 | | (4x-3)(5x-3)=(8x-7)(3x-1) | | 9c=72c= | | (3x-1)(4x-3)=(8x-7)(3x-1) |